Tag archives for Microcontroller

Interfacing ENC28J60 Ethernet Controller with PIC Microcontroller – XC8

image-2866
Ethernet is the leading wired standard for networking as it enables to connect a very large number of computers, microcontrollers and other computer-based equipment to one another. With just a network switch, many different devices can easily communicate with one another with Ethernet, allowing different devices and equipment to be accessed remotely and this also provides a cost-effective and reliable means of remote control and monitoring. For microcontrollers which don't have an integrated Ethernet peripheral, Microchip offers a serial Ethernet chip that can easily be used by any microcontroller with an SPI interface to provide Ethernet capability to the application. The ENC28J60 is a popular 28-pin serial Ethernet chip, 10BASE-T stand alone Ethernet Controller with SPI interface, on board MAC & PHY, 8 Kbytes of Buffer RAM and an SPI serial interface. In this article we will learn how to use the ENC28J60 Ethernet controller with Microchip TCP/IP Lite Stack and MPLAB Code Configurator.
');

Pulse Width Modulation (PWM) with PIC Microcontroller – Flowcode

image-2994
In this article we will discuss the PWM with Flowcode. Pulse width modulation (PWM) is a technique of controlling the amount of power delivered to an electronic load by switching ON and OFF a digital signal. This is the simplest technique that can be used to produce analog voltages from a digital one. The fraction of the period for which the signal is ON to the total period is known as the duty cycle. The average DC value of the signal can be varied by varying the duty cycle. The duty cycle can be anywhere between 0 (signal is always off) to 1 (signal is constantly on).
');

Introduction to Programming Microcontrollers with Flowcode V6

image-1665
Flowcode is one of the World’s most advanced graphical programming languages for microcontrollers. It allows you to create complex microcontroller applications with advanced peripheral interfacing which make it easy to connect wide range of devices such as switches, LCD displays, analogue sensors, SD cards, Real time clocks, RS232/RS485, GPS, GSM, Bluetooth and so on by just dragging and dropping icons onto a flowchart. No prior knowledge of programming is required to start this course but a basic knowledge of PIC microcontrollers is necessary. In this article we are going to get a quick introduction to Flowcode v6.

MPLAB® Code Configurator

image-1477
The MPLAB® Code Configurator (MCC) is a user friendly Graphical User Interface (GUI) plug-in tool for MPLAB® X IDE which generates easy to understand C code that is inserted into an MPLAB® X project, based on the settings peripherals configurations and selections made in the Graphical User Interface (GUI). The generated code can be used in any application program. When starting out with a new project using Microchip 8-bit microcontrollers, setup of the configuration and all the peripherals can be time consuming, especially for new projects. The MPLAB® Code Configurator simplifies this down to a series of simple graphical selections from the menus within the MCC.

Automatic Temperature Control System using PIC Microcontroller – XC8

image-114
An automatic temperature control system has the ability to monitor and control the temperature of a specified space without human intervention. This project uses a PIC microcontroller to automatically control the temperature of an area. This area could be a small plant, a house or any place or device that require a controlled temperature like an incubator (egg) for example. The desired temperature setting is entered using a keypad. The temperature of the area is measured using an analog temperature sensor. The microcontroller reads the temperature every 10 s and compares it with the desired value. If the desired value is higher than the measured value, then the heater is turned ON, if on the other hand the measured value is higher than the desired value, then the fan is switched ON. An LCD display shows the measured temperature continuously. The project is designed using MPLAB XC8 Compiler

Interfacing SD Card With PIC Microcontroller – XC8

image-16
A memory card (also called a flash memory card) is a solid-state electronic data storage device used for storing digital information. They are commonly used in many electronic devices, including digital cameras, mobile phones, laptop computers, MP3 players and also in many applications where a large amount of data has to be stored either once or continuously like in data loggers. Memory cards are small, re-writable and are able to retain data without power. In this article we will learn how to interface an SD Card with a PIC Microcontroller with SPI bus to write and read to/from an SD card with MPLAB XC8 and MPLAB Code Configurator.

Sending SMS Text Message using PIC Microcontroller – Flowcode

image-120
A GSM modem is a wireless modem that works with a GSM wireless network. GSM stands for Global System for Mobile communications, this architecture is used for mobile communication in most of the countries in the world. A wireless modem acts basically like the traditional dial-up modem, the main difference is that a dial-up modem sends and receives data through a fixed telephone line while a wireless modem sends and receives data through radio waves. Besides the dial-up connection, GSM modem can also be used for sending and receiving SMS which is also one of the key features of GSM modem. In this article we are going to learn how to send an SMS text Message from a PIC Microcontroller using Flowcode for PIC.

Interfacing GSM/GPRS Modem with PIC Microcontroller – Flowcode

image-693
A GSM modem is a wireless modem that works with a GSM wireless network. GSM stands for Global System for Mobile communications, this architecture is used for mobile communication in most of the countries in the world. A wireless modem acts basically like the traditional dial-up modem, the main difference is that a dial-up modem sends and receives data through a fixed telephone line while a wireless modem sends and receives data through radio waves. Besides the dial-up connection, GSM modem can also be used for sending and receiving SMS which is also one of the key features of GSM modem. A GSM modem can be used in many applications including: Remote System Monitoring, Remote Controlling System, Prepaid Electricity, Home Alarm System, Home Automation, Data loggers, Vehicle tracking, etc. In this article we are going to learn the basics commands to control a GSM modem with a PIC Microcontroller, including sending and receiving an SMS using Flowcode.

Digital Clock using PIC Microcontroller and the DS1307 Real Time Clock – MikroC

image-128
Real Time Clock and Calendar functions are very important in many projects especially in data logging devices where a real time stamp is required in each record. This clock uses the DS1307 which is a low power serial real time clock/calender with full binary coded decimal (BCD) clock/calendar plus 56 bytes of Non Volatile Static RAM. This chip provides year, month, date, hour, minute and second information. The end date of months is automatically adjusted for months fewer than 31 days including leap year compensation up to year 2100. In this article we are going to design a digital clock using the DS1307 RTC with MikroC Pro for PIC compiler
1 2 9